the occurrence of hysteresis in the potential profile during the lithium intercalation and deintercalation.

* Author to whom correspondence should be addressed.

P9

Effect of temperature on the performance of PMAN carbon anodes in 1 M LiPF₆/EC-DMC solution

Ronald A. Guidotti and Bryan J. Johnson

Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0614, USA

A considerable research effort is underway to utilize carbon and graphite materials as anodes for use in rechargeable lithium-ion cells. Graphitic materials can theoretically be charged to a composition of LiC_6 or 372 mAh g⁻¹. Some disordered carbons have been reported to reversibly store over 500 mAh g⁻¹.

During the first intercalation, however, solvent-reduction processes take place which irreversibly tie up part of the Li⁺ in a passive film. The nature and composition of the film is a function of the type of solvent and supporting electrolyte used. It is desirable to minimize the extent of passive-film formation while maintaining a high reversible capacity for intercalation. To gain an understanding as to the kinetics of passive film formation, the intercalation process was examined as a function of temperature for carbons derived from a polymethacrylonitrile (PMAN)-divinylbenzene (DVB) copolymer. Both the irreversible and reversible capacities of the PMAN carbons were measured during galvanostatic cyclic experiments with 1 M LiPF₆/ethylene carbonate (EC)-dimethyl carbonate solution between 2 V and 0.01 V versus Li/Li⁺ at temperatures of 5, 21 and 35°C. Cyclic voltammetric experiments between 3 V and 0.01 V were used to obtain supplemental information. Complex impedance spectra were taken as a function of voltage during intercalation to derive kinetic information of the intercalation and passive-film processes.

P10

Bismuth compounds as cathodic material for lithium accumulators

R.D. Apostolova, E.M. Shembel, V.M. Duda and A.Yu. Kudzin

Ukranian State Chemical Technology University, 8 Gagarin Ave., 320005 Dniepropetrovsk, Ukraine

Several groups of bismuth-containing oxide compounds (BCOC) were investigated to use as cathodic materials in

lithium accumulators. Galvanostatic characteristics of composite BCOC-based electrodes have been obtained in PC, $DME/1 M LiClO_4$ electrolyte.

 $BiXO_3$ (X = Eu, Sm) compounds have been assigned to the first group of BCOCs investigated.

The OCV of Li/BiXO₃ is 3.1 to 3.2 V. During cycling at a current density of 2 mA cm⁻² for six cycles, the following specific discharge capacities (Ah kg⁻¹) were obtained:

	Cycle number					
	1	2	3	4	5	6
BiEuO ₃	145	140	130	100	75	76
BiSmO ₃	320	315	200	158	140	148

At the first cycle of this BCOC group, the discharge curve is characterised by the voltage plateau of 1.7-1.4 V which increased up to 2.1-2.0 V in the subsequent cycles.

In the second group of BCOC, Aurivillius [1,2] phases, $Li/Bi_4Ti_3O_{12}$ and $Bi_4V_2O_{11}$ have been investigated. On discharge at 1 mA cm⁻² to 1.1 V, on the first cycle, bismuth titanate gave 325 Ah kg⁻¹ and 490 Wh kg⁻¹. During the next three cycles, capacity dropped to 175, 180 and 170 Ah kg⁻¹, over the voltage range 4 to 1.1 V.

 $Bi_4V_2O_{11}$ was also investigated in monocrystalline form. The lithium/bismuth vanadate has the following characteristics: OCV = 3.1 V. Plateau voltage on first discharge at 0.1 mA cm⁻² was 1.8 V and the capacity to 1.1 V was 390 Ah kg⁻¹. Capacity decreased with cycling (Ah kg⁻¹). 2nd: 241, 3rd: 175, 4th: 108, 5th: 102, 6th: 103.

In the third group investigated, BCOC was a mixture of $PbBi_2O_3 + Bi_4Ti_2O_3$. The OCV was 3.1 to 3.15 V and capacity 575 Ah kg⁻¹ at 0.1 mA cm⁻² down to 1.1 V, or 260 Ah kg⁻¹ to 1.5 V.

These first results are encouraging. For practical accumulators, more investigations are necessary.

References

[1] B. Aurivillius, Ark. Kemi., (1949) 463.

[2] B. Aurivillius, Ark. Kemi., (1949) 499.

P11

Modelling and optimization of the parameters of the lithium/nonaqueous electrolyte interface in high energy power sources

E.M. Shembel ^a, I.M. Maksyuta ^a, L.I. Neduzhko ^a,

A.B. Alexandrov^b, V.V. Rozhkov^b, V.V. Mukhin^b

^a Ukranian State Chemical Technology University, 8 Gagarin Ave.,

320005 Dniepropetrovsk, Ukraine

^b Chemical Concentrates Plan, Khmelnitsy Street, Novosibirsk, Russia

The problem of passivating film formation on lithium surfaces and the influence of the properties of this film is of